Logo

AWS Discovery Day - Prompt Engineering

Дата

Понедельник, 9 Декабря 2024

Обязательное поле.
Обязательное поле.
Обязательное поле.
Обязательное поле.
Обязательное поле.
Обязательные поля
Если вы уже зарегистрировались, но не можете найти подтверждение вашей регистрации, Нажмите здесь!
Это неправильный адрес электронной почты. Проверьте адрес еще раз.

Письмо с подтверждением и учетными данными для входа отправлено на указанный адрес эл. почты.

Проверка параметров системы. Нажмите здесь!

Mit Absenden meiner Registrierung erkläre ich mich bereit von tecRacer Consulting GmbH per E-Mail oder Telefon Informationen erhalten. Sie können sich anhand der in den Mitteilungen enthaltenen Hinweise jederzeit abmelden. Ihre Informationen werden gemäß den tecRacer Datenschutzbestimmungen verarbeitet.

Программа мероприятия

BESCHREIBUNG

In diesem Kurs lernen Sie, wie Sie Prompts für eine Vielzahl von generativen KI-Modellen erstellen und optimieren können. Zunächst werden in diesem Kurs die Grundlagen von Basismodellen behandelt, einschließlich einer Untergruppe von Basismodellen (FMs), den sogenannten großen Sprachmodellen (LLMs). Anschließend werden die grundlegenden Konzepte des Prompt-Engineering behandelt, wie z.B. die verschiedenen Elemente eines Prompts und einige allgemeine Best Practices für den effektiven Einsatz von Prompts. Schließlich bietet der Kurs Informationen zu grundlegenden Prompt-Techniken, einschließlich Zero-Shot, Some-Shot und Chain-of-Thought (CoT) Prompting.

  • Level: Grundkenntnisse
  • Dauer: 1 Stunde


THEMEN

Bei dieser Veranstaltung erfahren Sie von:

  • den grundlegenden Konzepten von FMs und LLMs
  • Definition von Prompt-Engineering und Identifizierung der besten Praktiken für die Gestaltung effektiver Prompts
  • den grundlegenden Arten, Prompt-Techniken zu identifizieren, einschließlich zero-shot-, few-shot-, und CoT-Techniken

Zielgruppe

Diese Veranstaltung richtet sich an:

  • Prompt engineers
  • Data scientists
  • Developers


KURSINHALT

Abschnitt 1: Grundmodelle und große Sprachmodelle

  • Wie funktioniert ein Basismodell?
  • Training von FMs
  • Arten von FMs
  • Large language models
  • Transformer-Architektur
  • Neuronale Netze
  • LLM Anwendungsfälle


Abschnitt 2: Schlüsselkonzepte des Prompt Engineering

  • Feinabstimmung und Prompt-Engineering
  • Elemente eines Prompts
  • Bewährte Verfahren für die Gestaltung effektiver Prompts
  • Praxis mit Prompts


Abschnitt 3: Vereinheitlichen

  • Zero-Shot Prompting
  • Few-shot Prompting
  • Gedankenketten Prompting